VLATTICE - Visible Lattice Points
Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y.
Input : The first line contains the number of test cases T. The next T lines contain an interger N Output : Output T lines, one corresponding to each test case. Sample Input : 3 1 2 5 Sample Output : 7 19 175 Constraints : T <= 50 1 <= N <= 1000000
Description(题意)
有 N*N*N网格. 一个角落在 (0,0,0),对顶角落是 (N,N,N). 问从(0,0,0)看有多少个格点是可见的?点 X从点Y可见,当且仅当,线段XY上没有其他的点。
Input:
第一行是测试数据个数T。接着有T行每行有一个整数 N.
Output :
输出T行,每行是对应的可见格点的个数。
Sample Input :
3
1
2
5
Sample Output :
7
19
175
Constraints :
T <= 50
1 <= N <= 1000000
Solution:
#include#include #ifdef WIN32#define LL "%I64d"#else#define LL "%lld"#endifusing namespace std;typedef long long ll;const int M=1e6+5;int n,m,T;ll sum[M];int tot,prime[M/3],mu[M];bool check[M];void sieve(){ n=1e6;mu[1]=1; for(int i=2;i<=n;i++){ if(!check[i]) prime[++tot]=i,mu[i]=-1; for(int j=1;j<=tot&&i*prime[j]<=n;j++){ check[i*prime[j]]=1; if(!(i%prime[j])){mu[i*prime[j]]=0;break;} else mu[i*prime[j]]=-mu[i]; } } for(int i=1;i<=n;i++) sum[i]=sum[i-1]+mu[i];}inline ll s2(int x){ return 1LL*x*x;}inline ll s3(int x){ return 1LL*x*x*x;}inline ll solve(int n){ ll ans=3; for(int i=1,pos;i<=n;i=pos+1){ pos=n/(n/i); ans+=s3(n/i)*(sum[pos]-sum[i-1]); ans+=3*s2(n/i)*(sum[pos]-sum[i-1]); } return ans;}int main(){ sieve(); for(scanf("%d",&T);T--;){ scanf("%d",&n); printf(LL"\n",solve(n)); } return 0;}